隨著深度學習技術的不斷進步和計算能力的顯著增強,大模型成為人工智能領域的重要支柱,也在迅速的落地到不同的領域。在教育領域,個性化和創(chuàng)新能力的培養(yǎng)比以往任何時候都更為重要,而大模型技術和應用正推動著教育模式的深刻變革。這些技術通過提供個性化學習體驗、智能輔導和精準評估,來因材施教,進而提升學生的自主學習能力,激發(fā)學生的創(chuàng)造力和探索精神。
近日,在華東師范大學,一場關于“科技賦能教育 探索大規(guī)模個性化學習”的研討會,針對智能技術賦能大規(guī)模個性化進行深入討論,并推廣廣泛的實踐,即如何在大規(guī)模教學中應用科技手段賦能教育,實現個性化、精細化的學習體驗,因材施教成為亟待解決的核心問題。 智適應學習:從小閉環(huán)到大閉環(huán) 近年來,隨著科技的發(fā)展,教育模式也發(fā)生革命性變化,傳統(tǒng)的一刀切模式不再適合。另外,新課標新教材的施行,使得學生全面的素養(yǎng)發(fā)展越來越受關注。 業(yè)界除了對靜態(tài)知識點的掌握之外,通過各種技術手段更加全面地測量學生的學習模型、學習過程等,對數據進行建模并診斷當前所處學習階段及背后影響因素,成為因材施教的基礎。 華東師大教育學部教育信息技術學系主任、上海數字化教育裝備工程技術研究中心主任顧小清長期以來持續(xù)關注人工智能等技術能力在教育領域的應用。她認為,自適應教育作為一種利用技術來促進學生個性化學習體驗的樣態(tài),核心在于個性化學習路徑規(guī)劃、數據驅動決策、及時反饋支持以及學習內容個性化。
目前,隨著AIGC等新興技術的累積融合,自適應教育正在進化為更加智能化的“智適應學習”,進一步提高教育的質量和效率。 在顧小清看來,智適應學習一般有一大一小兩個閉環(huán),當前的智適應學習產品更多是小閉環(huán),圍繞某一學科的某一個知識點進行測量、診斷和干預。但在宏觀教育變革下,越來越關注學生的素養(yǎng)發(fā)展,需要更關注大閉環(huán)——在課程結構層面實現對學習狀態(tài)的測量、診斷和干預。 具體來看,智適應學習的研究涉及到三個方面的問題:一是有哪些關鍵指標和數據來衡量測量學生的素養(yǎng)和發(fā)展;二是需要技術來實現基于數據的測量、診斷和干預;三是需要模型跟學生的學習場景相結合,形成具體的可落地的產品。 學然后知不足,教然后知困 在《禮記·學記》中,有這樣一句話“學然后知不足,教然后知困”,就強調了學習和教學的動態(tài)發(fā)展過程,這種理念至今仍然具有重要的現實意義。 正如顧小清所說,智適應學習實際上是通過對學習者的學習數據的測量、診斷和干預來實現的,需要持續(xù)積累學習者的行為和結果數據,通過對這部分數據進行建模,才能夠獲得對學習者的干預。 “首先,我們需要利用智能技術去獲得對學生學習狀態(tài)的測量。”顧小清指出,在這個階段,AI技術則起到了很好的輔助作用。 為此,顧小清團隊與作業(yè)幫硬件于2023年底啟動“基于認知負荷的自適應學習機制研究”,在重慶人和街小學選擇在一所小學不同班級使用帶有自適應學習機制設計的作業(yè)幫學習機,展開為期16周的課題研究。 在這個過程中,自適應學習機制能夠通過學習機的“診斷規(guī)劃”功能比較精準地識別學生知識薄弱點,管理學生的認知負荷,通過給學生提供個性化的學情反饋制定學習路徑和學習計劃,推送適合當前水平的學習內容。 在學習內容方面,作業(yè)幫硬件教研團隊基于分析新課標、新考綱等要求,圍繞知識點,進行重新組織,以初中數學為例,將所有知識拆解成1600+個知識節(jié)點并實現100%匹配講解視頻。在精準學的場景下,每個視頻時長5-10分鐘,在學生有限的注意力集中時段提供更高效的學習方式。 研究結果顯示,參與實驗的學生在每天有限的時間內實現知識掌握度的大幅提升。其中,學習的進度相對較慢的學生在使用學習機后學習效果提升更明顯,約有15.2%的提升幅度。 此外,無論是學習機使用時長的差異還是學習效果提升差異,均凸顯了在自適應學習機制中的差異化教學、學習路徑可以滿足不同學習者的學習需求從而幫助其更快提升。隨著學生對學習機熟悉程度加深,對學習機陌生感帶來的外在認知負荷持續(xù)減少,而伴隨交互數據的積累,學生對課程內容等相關負荷會持續(xù)增加,也就意味著知識掌握程度在持續(xù)提升。 大模型技術踐行“因材施教” 值得關注的是,本次研究結合了認知負荷理論(CLT)等認知科學與心理學、智能技術,通過分析學習機脫敏交互行為數據,對教師、家長和學生進行問卷調查及訪談等方式,在學校、家庭場景中為學生營造更加個性化的學習支持與輔導,探索提升學生學習成效的同時,增加學習興趣,減少學習中不必要的負擔。 據悉,基于華東師大與作業(yè)幫硬件的聯合課題研究,此次研討會還發(fā)布了《基于認知負荷的自適應學習機制研究報告”》(以下簡稱為“報告”)。報告顯示,以AI學習機為代表的自適應學習機制能夠識別學生知識薄弱點并實現個性化精準學習,同時在課后輔導、作業(yè)設計方面具備一定優(yōu)勢,對學生的學習效果和自主學習能力培養(yǎng)有較為明顯的提升。 根據報告,作業(yè)幫學習機進行系統(tǒng)升級并引入大模型后,可以更加動態(tài)地追蹤學習數據,幫助學生提升其高階思維,助力實現項目式學習和協(xié)作式的合作學習。 華東師大教信系博士后劉婧韡表示,此次系統(tǒng)的迭代,使學習機具備了更加個性化的反饋和學習路徑,有助于深度培養(yǎng)學生的自主學習能力。
“理想的教育是因材施教,是讓每個孩子的潛能都能夠得到發(fā)揮和成長。”顧小清表示,對于智適應學習來說,我們都是試圖以學習者為中心去追蹤他,了解他,為他提供量身定制的學習工具、學習資源、學習服務。 作為本次研究實際落地的學校,重慶市人和街小學課程中心主任鄧江華表示,此次課題研究讓教師的課堂教學方式更加多元化,讓數學學習更加有趣,激發(fā)了學生的數學學習興趣。利用帶自適應機制的學習機輔助學生鞏固練習,不僅提升了學生的學習效率和自主學習能力,也推動了教師的差異化教學,真正做到了分層練習,減負提質。教師的角色也從教學工作者轉向了學習設計體驗者,可以基于學情數據及時給予針對性、個性化的指導,顯著提升課堂效率。 在全球教育領域不斷探索創(chuàng)新的今天,大模型這項突破性技術正以其獨特的智能化優(yōu)勢,為傳統(tǒng)教育模式帶來變革。大模型的引入為智適應學習系統(tǒng)帶來了更深層次的個性化和智能化,使得學習系統(tǒng)能夠更好地適應每個學習者的獨特需求和能力,從而實現真正意義上的個性化學習。
注:文章及圖片轉載自網絡,如有侵權,請聯系刪除
|